Robotic Process Automation Can Optimize Your Test Instrumentation
Product innovation is stoking the demand for new features and driving up the cost of research and development (R&D). Electronics companies spend a lot of money on components, labor, and testing as part of the R&D process. Testing spans every phase of R&D. When incorporating a new design element into a product, manufacturers must test the element for performance. If they replace a small component with a lower-cost or higher-performance component, they must test again.
Design, testing, and verification are time-consuming, repetitive, and costly. Design validation engineers must ensure that their solution designs perform well under demanding environments while minimizing manufacturing costs and verification stages. Each step requires testing, debugging, and verification.
Many applications use automation to increase efficiency. Keysight's PathWave Instrument Robotic process automation (RPA) can help reduce the repetitive and manual labor involved in testing, such as clicking on software or swapping out test instruments. RPA speeds up hardware validation by allowing engineers to work on other projects or tasks during repetitive testing. Before evaluating whether RPA saves design validation engineers time, we must first understand the tests and associated costs.
Time and Cost for Hardware Verification Tests
When it comes to the time and cost required for testing designs, there are numerous repetitive tasks:
■ testing hardware under conditions to simulate real-world environments
■ verifying hardware to ensure it conforms with specifications, user expectations, and local environmental regulations
■ debugging hardware to ensure it will perform as expected under normal and abnormal conditions
■ ensuring that appropriate security measures are in place and that they perform to appropriate safety and security standards
The time and cost of each test vary depending on the project or task at hand. Assume three hours per test as an example. Using the four examples above, that would be 12 hours of engineer time spent on four tests. This estimate assumes that engineers performed all steps correctly, every measurement came out as expected, and there were no errors during instrumentation changes and adjustments. If not, a test can go from three hours to four or five. Automating an engineer's repetitive processes can save a lot of time.
Validation engineers perform each measurement in a configured environment, then stop and set up the next environment and perform the same tests again. They repeat this process until they have tested each scenario. Throughout the process, the engineers need to switch out the test instruments, change probes and hardware, and adjust settings. Not every test uses the same instruments or software and changing those elements can delay testing. Figure 1 shows a workflow example of PathWave Instrument RPA automating hardware verification on a device under test.
Figure 1. Workflow example of PathWave Instrument RPA on a device under test
No test environment is the same, there is multiple manufacturing test instrumentation on an engineer's test bench. Which can cause issues in testing due to unsupported software or instrumentation. In cases like this, it leads to more time per task due to instrumentation switching or time lost on having to order new instrumentation that is compatible, along with cost.
Expanding to 10 or 20 tasks per configuration can delay your project and drive up the costs. We begin to see the actual cost of development and verification testing in R&D as we dig deeper through each task, but we see a common cost issue in every test: time.
Save Time on Hardware Verification Testing
Every business owner knows that when a project or task takes a lot of time, that means more money is spent. But rushing or cutting corners in engineering hardware verification could lead to catastrophic failures. Therefore, the best way to reduce the amount of time spent on each task is to complete the task more efficiently.
Every step of testing carries a risk of human error. Within the barriers of optimization, there is a risk of errors during instrument changes or between measurements when inputs are incorrect. Doing a lot of tedious, repetitive tasks can cause engineers to overlook small procedures. These seemingly minor issues can create significant errors in testing verification, leading to a large risk of human error.
Let's evaluate RPA in a test instrumentation world. PathWave RPA enables the configuration and building of complex workflows via parameterization. If automation requires engineers to enable changes, it is not efficient. With that in mind, if an engineer is not nearby, the software automation can enable remote access so someone can check on the test status and enable any parameter changes. Using test instrumentation from more than one manufacturer adds another automation challenge and a barrier to optimization, PathWave Instrument RPA is compatible with most instrumentation.
Lastly, all these requirements are challenging on their own, but if an engineer must write all the code to enable this process, that adds more cost, time, and inefficiency. Thus, PathWave Instrument RPA software allows for recording, playback, and sharing of the automation test, all without manually written software code.
Engineers take many hours to perform different measurements during one test. RPA can help them conduct repetitive tests by changing instrumentation measurement parameters or switching between software applications to take different measurements. This increases performance and efficiency, enabling test engineers to focus on their next project. Those 12 hours on four tasks can become 12 hours for eight tasks by cutting test times in half and getting projects completed on time or even early. In manufacturing, better use of test time provides a better return on investment.
RPA Is Ideal for Test Instrumentation
In addition to increasing efficiency in testing tasks, automation enables better performance from employees. The many hours spent on repetitive tasks create stress and affect performance. As automation enables better performance and results, engineers can work on multiple projects without the fear of delays or missing performance goals.
Incorporating RPA into your test instrument environment can help increase innovation through hardware verification and testing and improve the productivity of innovation through employee satisfaction. RPA is not something to fear or avoid when using test instrumentation but to embrace and incorporate for repetitive testing tasks. RPA can enable us to save time, which is a resource we cannot get back.
- +1 Like
- Add to Favorites
Recommend
- Keysight Introduces PathWave Design 2024 with Automation and Collaboration Support for Enterprise EDA Workflows
- Keysight PathWave System Design 2023 Software Accelerates RF System Design and Digital Mission Engineering Workflows for 5G Non-Terrestrial Networks
- Keysight PathWave Software Selected by Menlo Micro to Reduce Design Cycle for New Radio Frequency Microelectromechanical Switch
- Keysight Introduces PathWave ADS 2024 to Accelerate 5G mmWave Design and Pioneer 6G Development
- 5 Quick Tips You Should Know as a New PathWave BenchVue User
- Keysight Expands eCommerce Offering; Adds New Software Bundles
- Keysight, Synopsys Collaborate in TSMC’s N6RF Design Reference Flow
- Boosting Your Manufacturing Analytics System with Keysight’s Pathwave Manufacturing Analytics (PMA)
This document is provided by Sekorm Platform for VIP exclusive service. The copyright is owned by Sekorm. Without authorization, any medias, websites or individual are not allowed to reprint. When authorizing the reprint, the link of www.sekorm.com must be indicated.