COMPUTATIONAL METHOD FOR CHARACTERIZATION OF A MICROCHANNEL HEAT SINK INVOLVING TWO-PHASE FLOW

2020-11-26

Microchannel heat sinks are being increasingly considered for the cooling of electronic equipment because of their ability to absorb high heat fluxes directly from the heat-dissipating components in a compact manner with a low thermal resistance. In this study, a computational method is presented for the analysis of conjugate heat transfer and two-phase flow in a heat sink containing a single microchannel. It involves a two-domain solution of the three-dimensional conduction within the solid region and the one-dimensional two-phase momentum and energy transfer within a microchannel. The nonlinear coupling between the two domains that occurs through the heat exchange at the walls of the microchannels is handled using an iterative calculation. Analysis of the flow and heat transfer in the microchannel is based on the homogenous flow assumption that is deemed to be accurate for the flow of low surface tension coolants such as methanol, isobutane, and HFC’s. Representative single and two-phase correlations are used for the calculation of the friction factor and the heat transfer coefficient. The computational model is applied for the prediction of the performance of a microchannel heat sink over a range of mass flow rates. The results of the analysis show the important physical effects that govern the performance of the microchannel heat sink involving two-phase flow. These include the acceleration of the flow in the microchannel in the two-phase region that influences the pressure drop through it and the two-phase enhancement of heat transfer that determines the temperature field within the solid region.

AAVID

Microchannel heat sinks

More

More

Application note & Design Guide

More

More

Please see the document for details

More

More

English Chinese Chinese and English Japanese

2018/01/17

786 KB

- The full preview is over. If you want to read the whole 10 page document,please Sign in/Register -
  • +1 Like
  • Add to Favorites

Recommend

All reproduced articles on this site are for the purpose of conveying more information and clearly indicate the source. If media or individuals who do not want to be reproduced can contact us, which will be deleted.

Contact Us

Email: